5. Inequalities for an Equation of State of the Form E(v, D, A, 8)

It is of interest to reformulate the inequalities (1.7)-(1.9) for an equation of state E=E(v, D, A, S), which
is frequently used in applications [A =1/3 (d§+d§+d§)]. However, the relaxation of tangential stresses as a
result of plastic deformations, characterized by a relaxation time 7, occurs more rapidly the larger the value
of the tangential stresses, i.e., the larger the values of D and A, As a result of the essentially nonlinear
character of the dependence of T on the tangential stresses [1], in actual processes

jdil + 1d,| + ld5l < 1, D1, Al L.

Under these conditions by neglecting the terms containing d; as factors, inequalities (1.7)-(1.9) can be
written in the form

r—Ep>0, ¢ = v*Fup+ (2/3) Ep >0,
l=vE;g<<0,T=Eg>0,g=—Ep<<O, (5.1)
qg=— 2Ep -+ 2UE.,,D -+ V*E oo + (4/3) EA<O: at= 2E1m>0-

The inequalities
ED >0, E,, >0, Epg< 0, E‘DD <0, Eum<<0, Bp<<O,

which are satisfied for interpolation formulas of the equations of state E(v, D, §) given in {3], are sufficient
to ensure that (5.1) are satisfied.

The author thanks S. K. Godunov and E, I, Romenskii for their interest in the work.
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SHOCK ADIABATS OF ALKALI HALIDE CRYSTALS

V. A. Zhdanov and V. V, Polyakov UDC 539.21

Nonparametric calculation of shock adiabats makes it possible to relate shock-compression parameters
of a material directly determinable in experiment with parameters characterizing the material on an atomic
level. Establishment of such a relationship is a necessary step in preliminary calculation of shock-compres-
sion parameters, which are of great significance in planning experiments and in problems involving construc-
tion with materials having given optimum properties.

Nonparametric calculation of shock adiabats of alkali halide crystals is of interest because these crys-
tals have been studied experimentally in great detail, allowing experimental verification of calculations. At
the same time, if we consider that many inorganic materials, including sitalls, glasses, ceramics, and some
explosives, have ionic or predominantly ionic bonds, study of alkali halide crystals is necessary tobe able
to consider the behavior of these materials under shock-compression conditions,

The shock adiabat Py(V) can be calculated with the formula (1]

P (V) + v (W) {E,—U MV
T+ YN U—VoVi2

Pr(V) = (1)
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TABLE 1

' é ‘Phasge B1 Phase B2
E 8’8 \Z E, 1% E,
S50 3 tkcal/ | Px, kbar | Py kbar | Yo | gcal/ | Py, kbar]p; kbar
0 S&l Y mole v mole
142} 141 40 47 1.371 1.8 86 90
1.20 | 2.8 75 85 1461 10 137 158
LiBr | 1.28 | 5.4 119 136 1.55| 14 204 256
1.36 | 9.2 177 205 166 19 288 39
1.56 | 22 346 434 1.77] 26 395 602
1.80 | 42 618 896 1.89] 35 532 918
143 [ 1.3 29 33 1.39 6.3 57 64
1.26 5.2 78 87 1.47 8.8 90 110
NaBr | 1.42 [ 13 157 184 1.641 16 180 260
1.50 | 19 212 259 [ 1.74| 22 246 392
1.60 | 26 282 365 184 30 326 587
1.69 | 36 369 514 1.951 39 425 896
1.42 | 114 21 26 1.31 3.8 22 24
147 | 25 38 44 1.37 5.1 41 51
1.23 | 4.6 60 69 1.45 7.3 67 89
KBr 1.521 10 98 142
i 1.60| 14 138 219
1.69( 19 187 333
1.791 25 248 511
1.06 | 0.4 15 21 £.30 4.4 36 39
1.12 1.6 43 50 1.37 6.3 76 92
RbF 1.19 3.6 79 90 1.46 9.2 128 11
1.27 6.8 126 145 1.55 13 194 288
1.64 19 284 469
1.75 26 386 752
144 | 1.4 26 30 1.33 4.2 28 3
1.19 3.0 44 49 1.40 5.6 48 59
RbCl | 1.26 5.4 66 75 1.47 8.1 75 98
1.55 11 107 153
1.63 15 149 232
1721 2 200 348
182 28 265 530
142 [ 14 18 22 1.31 3.2 17 20
1.46 | 2.5 33 37 1.37 4.6 35 44
RbBr | 1.22 | 4.6 52 58 1.44 6.6 56 76
1.51 0.4 83 122
1.59 3 117 189
1.67( 18 158 287
1.75 24 210 442
TABLE 2
3 T
Chemical Ve, cm¥/g Voo cm®/g vg}:;))emnen-
calcula- |experimen-| calcula- |calcula-
compound don ta{)data [5] tion tion E%g]ata
LiBr 0.255 0.289 0.250 1.38 1.94
NaBr 0.325 0.312 0.319 1.58 1.65
KDr 0.342 0.363 0.335 1.75 1.50
RbF 0.254 0.259 0,249 1.7 1.40
RbCl 0.343 0.355 0.336 1.73 1.39
RbBr 0.284 0.298 0.278 1.86 1.42

where U(V) is the binding energy of the deformed lattice; P, (V) is the pressure at zero isotherm; y (V) is the
Griineisen coefficient; and V, and E; are the volume and internal energy of free crystal with lattice Bl at room
temperature, A statistical approximation of the quantum theory of solids makes it possible to calculate the
functions U(V) and Py (V) without use of experimental data [2]. In this approximation, which is a quasiclassical
form of the Hartree —Fock method, the crystalline lattice binding energy function is expressed in terms of the
electron distribution density function in the crystal and structural elements. For ionic crystals, we choose

as the structural elements free ions, assuming that the electron distribution density in ions does not change
upon their unification into a lattice, which, as calculations for alkali halide crystals reveal, is a good approxi-
mation, We obtain the binding energy function in the form (3]

U=§§'ﬁf+b|_ezz'5 lzib*(*)l ) [ et gy L 25[R[pa+pb1-Rlpal—R[pb1}dr
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TABLE 3

Chemi~ Param- Exptl.
cal com-eters,a \Cale, | data Calc.
pound [kmhec [14]
LiBr a 2,58 2,6 1,89%
b 1,40 1,4 1,54*
NaBr a 2,59 2,6 1,93*
b 1,43 1,3 1,53%
KBr a 2,34 1,69%
b 1,53 — 1,62*
RbF a 2,62 2,12*
b 1,53 1,62%
RbCl a 2,47 1,5% 1,74%
b 1,50 1,6* 1,61%*
RbBr a 2,09 1,4% 1,44*
b 1,60 1,6% 1,67*
D, ™ ]

2 | el Sy
SR AYE
. VAVl an
A :

0 4 8 u, km/sec’

Fig. 1 Fig. 2

where Z, and R, are the charge and radms—vector of the a-th nucleus; p,4(r) is the electrondistribution density
function m the a-th ion; the nonlinear operator R is defined by the equation

o RUT =y 7 e,
2y, = 330 302 10m, x, = — 3¥3e2)4n'?.

The electron densities p,(r) are constructed from wave functions, found by solution of the Hartree~ Fock equa-
tion for isolated ions. On the basis of the binding energy function obtained in the statistical approximation [4]
we constructed shock adiabats of NaCl, which proved to be in good agreement with experiment, confirming the
validity of the model and approximations upon which the nonparametric calculation is based.

In the present study we will perform analogous calculations for LiBr, NaBr, KBr, RbF, RbCl, and RbBr
crystals. Nonparametric equations of state were obtained for these crystals in phases Bl (NaCl lattice) and
B2 (CsCl lattice), which were proved valid by comparison with experiment in the static pressure region, Shock
adiabats of the Bl lattice were calculated with Eq. (1) using calculated values of V, and Ey; calculations for the
B2 lattice were performed with Eq. (1) with the same initial state parameters and values of U(V), P4(V), and
v (V), referring to phase B2.

The shock-compression pressures Pp(V) obtained are presented in Table 1, which also shows pressures
Py and energies Ey of the zero isotherms as functions of relative compression V,/V. Table 2 presents cal-
culated values of specific volume V, which are close to the experimental data of [5]. The Grilneisen coefficients
v (V) were calculated with the formula of Zubarev and Vashchenko [6]. Values of y(V,) for free lattices shown
in Table 2 agree well with experimental values from [7-9].

The data of Tables 1 and 2 may be used to obtain scalar equations of state for alkali halide erystals cor-
responding to hydrostatic compression. To compare the results of calculation with static measurements per-
formed at room temperature, it is necessary to take the pressure PX as a function of relative compression
Voe/V, where Vi, is the calculated volume of a free crystal with lattice Bl at temperature 0°K.

Figure 1 shows calculated shock adiabats for crystals LiBrand KBr (experimental data: 1 — [10];2 — [11];
3 — {12]). For LiBrthe experimental points from [10] correlate well with the curve of phase B1; the transition
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to the dense phase was not achieved experimentally, Inthe case of KBr the phase transition occurs in the low-
pressure region. In the transition region the location of the experimental points from [11] agrees well with

the calculated curves for phases Bl and B2. At higher pressure the experimental data [11, 12] are close to

the calculated curve for phase B2, At pressures above ~400 kbar the experimental points deviate sharply
from the calculated B2-phase curve, which is evidently caused by the fusion occurring in this region [13]. Ex-
perimental data on Pr(V), for other crystals presented in Table 1 were not available.

The shock adiabats obtained for LiBr, NaBr, KBr, RbF, RbCl, and RbBr crystals allow calculation of
the relationship between shock-wave velocity D and mass velocity u, which can be verified experimentally.
The following relationships based on conservation laws were used for calculation:

DV) =yPr(Vy — V), w(V}) = VoyPr/(V, — V),

in which Py and V) were taken for our calculations. The relationship between D and u obtained with tabular
values of P(V), can be approximated well over a wide interval by a function of the form

D =a -+ bu. 2)

Table 3 shows the parameters ¢ and b, determined from calculated velocities D and uby the method of least
squares for phases Bl and B2 (values with asterisks refer to B2 phase) for the crystals considered. As is
evident from Table 3, the transition from the Bl phase to the B2 phase is related to an increase in the slope
of Eq. (2) and to reduction in parameter a. Results of calculating parameters g and b agree well with experi-
mental values from [14] for both phases. Figure 2 shows the location of experimental points referred to the
lines calculated from Eq. (2) for LiBr, NaBr, and KBr crystals: 1) [10]; 2) [15]; 3) {11]; 4) [12]. For LiBr
and KBr the location agrees completely with Fig. 1; for NaBr the experimental points taken with graphic ac-
curacy from [15] fit the calculated line corresponding to the B1 phase with satisfactory accuracy.

The shock—adiabat calculation for the RbF crystal, for which experimental values are unknown, is an
example of beforehand calculation of shock-compression parameters, The results obtained may be considered
as a model which should be considered in interpreting experimental data.
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SHOCK WAVES AND PHASE TRANSITIONS IN IRON

N. Kh., Akhmadeev and R. I. Nigmatulin UDC 539.89

INTRODUCTION

The process of shock compression in certain solids (iron, carbon, KCl, KBr, quartz, many minerals) is
accompanied at increased pressure pg by phase transitions, i.e., formation of new crystalline phases [1].
Changes in the wave configurations which then develop [2-4] permit determination of the characteristic times
of these transitions, which usually comprise 0.2-0.4 usec. In [5-7] a single-velocity single-temperature model
of a two-phase viscoplastic medium was developed, which was used for study of nonstationary shock waves in
Armeco iron with phase transitions, and on the basis of the relationship between phase transitions and harden-
ing, the kinetics of the phase transition o ==¢ in iron were determined. In the present study an investigation
of shock-wave propagation in Armco iron will be performed with consideration of new experiments [3, 4] in
which the multiwave structure of shock waves of various intensities were fixed directly by manganin sensors and.
a light interferometer. Under these experimental conditions,calculations were performed for motion of shock
waves on the front of which phase transitions occur. The kinetics of phase transition will be studied and pre-
sented in greater detail than in [6, 7].

§1. The basic equations in Lagrangian coordinates (r, t) for the case of one-dimensional motion with
uniaxial deformation have the form

(00/0) 0p119¢ +- p190/r + (po/p) 12 = O,
(Po/P)apzlat -+ pzav/ar —_ (po/p)lm =0

(Pi = P%ai{ oy + oy = 1, P=011 0y i=1, 2))
pdv/ot = do'/ar, (1.1)
0o/0 [010€,/0t +- p,06,/0t (&5 — €;) I1,] = c"dv/or,

o= —p+, p=p,(p}, T) = p, (3, T),
dnl/dt = (4/3) p(po/p) dvior, < T*,

where p;, pg, @i, e; are the mean density, true density, volume content and specific internal energy of the i~th
phase; p, v, T are the density, velocity, and temperature; o'!, 711, p are the stress tensor, stress deviator,
and hydrostatic pressure in the medium; x4, 7* are the shear modulus and elastic limit, for the description

of which Mises creep conditions willbe used;I;, is the velocity of phase transitions for which the following re-
lationships are fulfilled: Tjy=jyy —jsy;forthe 2— 1transition jj; =0, joy> 0;for the 1— 2 transitionji> 0, jyy =05 if-
there are no phase transitions jj; =0, jy; =0,

The intensity of the phase transitions considered is greater, the more the pressure p exceeds the phase~
transition pressure pg(T), i.e., the greater the nonequilibrium. Kineticsleading to retardation of phase tran-
sition and achievement of metastable states occur in the case of the transition Fe” ==Fe€, We will assume
[5-7] that the phase-transition velocity depends on the difference of the phase thermodynamic potentials (for
identical pressures and temperatures) and on the volume content of the original phase, Moreover, we allow
saturation of phase-transition velocity for sufficiently great deviations from the equilibrium line, Then at
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